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Abstract
The expression for the effective diffusion of an inertial, periodically driven
Brownian particle in an asymmetric, periodic potential is compared with the
step number diffusion which is extracted from the corresponding coarse grained
hopping process specifying the number of covered spatial periods within each
temporal period. The two expressions are typically different and involve the
correlations between the number of hops.

The expression used for the diffusion constant Deff in equation (12) in [1], which will be
denoted by DN in what follows, coincides with the definition in equation (5) in [1] only under
certain conditions; see figure 1. In order to understand the relation between these expressions
we split the random distance x(nT ), which the particle has covered after n periods of duration
T , into its integer multiple N(nT ) of spatial periods of length L and a remainder ε(nT ):

x(nT ) = N(nT )L + ε(nT ). (A1)

Note that ε(nT ) is non-negative and is bounded by L. From the definition (5) we then obtain

Deff = lim
n→∞

{
L2〈(δN(nT ))2〉

2nT
+ L〈δN(nT )δε(nT )〉

nT
+ 〈(δε(nT ))2〉

2nT

}

= lim
n→∞

L2〈(δN(nT ))2〉
2nT

. (A2)

Each fluctuation δN(nT ) = N(nT ) − 〈N(nT )〉 contributes to the averages with a factor
growing as n1/2 such that only the first term on the right-hand side of the first equation
contributes in the limit n → ∞. Next, we represent the number N(nT ) of spatial periods

0953-8984/06/164111+02$30.00 © 2006 IOP Publishing Ltd Printed in the UK 4111

http://dx.doi.org/10.1088/0953-8984/18/16/C01
mailto:lukasz.machura@physik.uni-augsburg.de
http://stacks.iop.org/JPhysCM/18/4111


4112 Addendum and Erratum

 

 D

3 3.5 4 4.5 5
a

Deff

DN

(a)

0 50 100 150 200 250
nT

a = 3.25
a = 3.70

(b)

10–4

10–2

100

102

N
l  

 N
l+

n 
δ

δ
〈

〉
N

2 l
δ 〈

〉

0

0.25

0.5

0.75

1

Figure 1. The step number diffusion DN and the effective diffusion Deff are depicted in panel (a)
as functions of the driving amplitude a on a logarithmic scale for the driving frequency ω = 4.9,
noise strength D = 0.001 and potential parameters c1 = 0.425 and c2 = 0.04. In the locked regime
for a < 3.1 both diffusion constants are comparably small. In the running regime for a > 3.1
both diffusion constants are large, with Deff becoming larger than DN roughly by a factor of ten.
The normalized correlations 〈δNl+nδNl〉/〈(δNl )

2〉 are depicted in panel (b) for two different values
of a, which are marked by arrows in panel (a). They extend over many periods T , leading to the
observed discrepancy of the two diffusion constants. For a = 3.25 the decay of the correlations is
much faster than for a = 3.7. Accordingly the difference Deff − DN is more pronounced at the
larger a value.

(This figure is in colour only in the electronic version)

covered within n temporal periods T as the sum of the number Nk of spatial periods which the
particle passes through within the kth temporal period of the driving force, i.e.

N(nT ) =
n∑

k=1

Nk . (A3)

From equation (A2) we then obtain

Deff = lim
n→∞

L2
∑n

k,l 〈δNkδNl 〉
2nT

= DN + lim
n→∞

L2
∑n

k,l,k �=l 〈δNkδNl 〉
2nT

(A4)

where

DN = lim
n→∞

L2
∑n

k 〈(δNk )
2〉

2nT
= L2〈(δNk)

2〉
2T

(A5)

is the quantity that was used in equation (12) in [1]. Here we took into account that in the limit
n → ∞ the increments δNk become stationary and the variances 〈(δNk)

2〉 are independent of
k. The difference between Deff and DN results from the sum over the correlations between the
increments δNk . In the limit n → ∞ the double sum is dominated by terms with large values
of k and l for which the correlations 〈δNkδNl〉 only depend on the difference k − l. If the
correlations decay more quickly than (k − l)−2 the limit can be simplified to read

Deff − DN = lim
n→∞

L2
∑n

k,l,k �=l 〈δNkδNl〉
2nT

= L2

T

∞∑
m=1

〈δNk+m δNk 〉. (A6)

In principle, this sum may take positive as well as negative values. In figure 1 we display the
dependence of Deff and DN on the amplitude of the driving force and illustrate the correlation
functions 〈δNk+m δNk 〉 in two selected cases.
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